ERK1/2 Signaling Plays an Important Role in Topoisomerase II Poison-Induced G2/M Checkpoint Activation
نویسندگان
چکیده
Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.
منابع مشابه
Early G2/M checkpoint failure as a molecular mechanism underlying etoposide-induced chromosomal aberrations.
Topoisomerase II (Topo II) inhibitors are cell cycle-specific DNA-damaging agents and often correlate with secondary leukemia with chromosomal translocations involving the mixed-lineage leukemia/myeloid lymphoid leukemia (MLL) gene on chromosome 11 band q23 (11q23). In spite of the clinical importance, the molecular mechanism for this chromosomal translocation has yet to be elucidated. In this ...
متن کاملA mitotic topoisomerase II checkpoint in budding yeast is required for genome stability but acts independently of Pds1/securin.
Topoisomerase II (Topo II) performs topological modifications on double-stranded DNA molecules that are essential for chromosome condensation, resolution, and segregation. In mammals, G2 and metaphase cell cycle delays induced by Topo II poisons have been proposed to be the result of checkpoint activation in response to the catenation state of DNA. However, the apparent lack of such controls in...
متن کاملIdentification of decatenation G2 checkpoint impairment independently of DNA damage G2 checkpoint in human lung cancer cell lines.
It has been suggested that attenuation of the decatenation G(2) checkpoint function, which ensures sufficient chromatid decatenation by topoisomerase II before entering into mitosis, may contribute to the acquisition of genetic instability in cancer cells. To date, however, very little information is available on this type of checkpoint defect in human cancers. In this study, we report for the ...
متن کاملPotentiation of cytotoxicity of topoisomerase i poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe.
UCN-01 is a potent inhibitor of the S- and G2-M-phase cell cycle checkpoints by targeting chk1 and possibly chk2 kinases. It has been shown in some, but not all, instances that UCN-01 potentiates the cytotoxicity of DNA-damaging agents selectively in p53-defective cells. We have investigated this concept in HCT116 colon cancer cells treated with the topoisomerase I poison SN-38. SN-38 alone ind...
متن کاملG 2 Arrest in Response to Topoisomerase II Inhibitors : The Role of p 53 1
We have previously found that the overexpression of p53 causes G2 arrest and represses the synthesis of cyclin-dependent kinase 1 and cyclin B1, two proteins required for cells to traverse from G2 into M. G2 arrest occurs in response to DNA damage caused by a variety of agents and treatments. Here, we investigate the role of p53 in the G2 arrest that occurs in response to the topoisomerase inhi...
متن کامل